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ABSTRACT

The MADS-box genes form a large family of pan-eukaryotic transcription factors that are involved 1n various aspects of plant
orowth and development, particularly reproduction. To understand the extent of their conservation and divergence in the
emerging model genus Aquilegia L. (Ranunculaceae), we have annotated 47 MADS-box containing loci from the recently
released hybrid A. coerulea E. James ‘Origami’ genome sequence. Phylogenetic analysis of these sequences along with those
previously identified from Arabidopsis (DC.) Heynh. and Oryza L. demonstrates that we were able to recover members of all
major subfamilies with the exception of clear M representatives. The evolution of the Aquilegia type 1 loci is similar to what has
been observed lor other angiosperms in exhibiting relatively recent gene radiation events. In contrast, the type 1l loci are
distributed across 12 subfamilies that were established betore the diversitication of the angiosperms. Overall, expressed
sequence tag (KEST) data exist for 20 of these loci; further characterization of gene expression patterns will be an important next
step. This characterization of Aquilegia MADS-box transcription factors thereby lays the foundation for many crucial studies on

the development and evolution of Aquilegia as well as the conservation of function across the MADS-box gene family.
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The MADS-box family of transcription factors is
well known for regulating growth and developmental
processes across eukaryotes, but 1t appears to be
especially critical in plants (Messenguy & Dubois,
2003; Gramzow & Theissen, 2010). Members of the
family are defined by the presence of the conserved
MADS-box, which 1s typically located at or close to
the 5" end of the coding region and consists of a 180
bp motif. This sequence encodes a DNA-binding
domain that recognizes regulatory elements known as
CArG boxes, which have the consensus sequence
5'CCIA/T],GG-3" (Riechmann et al., 1996b). Al-
though MADS-box genes are found 1n animals, fungi,
and plants, they tend to be much more diverse in
plants, particularly seed plants (Nam et al., 2003;
Gramzow & Theissen, 2010). Broadly speaking, there
are two main evolutionary lineages of MADS-box
oenes, which are referred to as type 1 and type 11 (Fig.
1). The better-studied type 1l lineage includes MEF2-
like genes 1n animals and fungi and MIKC-type genes
in plants (Alvarez-Buylla et al., 2000). The MIKC-
type genes derive their name from the four conserved
domains defined in their protein sequences: MADS
(M), Intervening (1), Keratin-like (K), and C-terminal
(C) (Ma et al., 1991). MIKC-type genes can be further
subdivided into the MIKC® and MIKC* (or MJ) types,
of which the MIKC“-type are the best-characterized

Aquilegia, gene duplication, MADS-box genes, Ranunculaceae.

oroup of MADS-box genes (Gramzow & Theissen,
2010). Numerous studies have demonstrated that
MIKC® MADS-box genes function as dimers and in
higher-order protein complexes (reviewed in Gram-
zow & Theissen, 2010). These protein—protein
interactions are primarily mediated by o-helical
regions of the K domain with some contributions

from the 1 and MADS domains (Riechmann et al.,
1996a; Yang et al., 2003; Yang & Jack, 2004). In

contrast to the well-understood M, I, and K domains,
the C-terminal domain shows much lower levels of
sequence conservation overall and remains somewhat
of a mystery. Several subfamilies of MIKC® loci
contain transcriptional activation domains at their C-
terminus (Honma & Goto, 2001), but no functions
have been clearly ascribed to the highly conserved C-
terminal motifs that define each lineage of the MIKCS
subfamily (reviewed 1n Litt & Kramer, 2010). Of the
14 major angiosperm lineages of MIKC® loci, 11
contribute directly to the transition to flowering or the
development of flowers themselves (reviewed 1n Yant
et al., 2009; Gramzow & Theissen, 2010; Melzer et
al., 2010), making comparative studies of this group
of particular i1mportance for understanding the
evolution of flowering plants. The MIKC*-type were
originally found in mosses and clubmosses but have
now also been identified in well-studied seed plants
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Schematic summary of the evolutionary relationships between the tive major subfamilies of MADS-box containing

loci. While all of the loci are defined by the presence of the MADS (M) domain, only the type 1l genes show conservation of three
additional domains: Intervening (I), Keratin-like (K), and C-terminal (C). Note that the C-terminal region of the type 1 loci 1s

completely distinct from that of the type 1.

such as the core eudicot Arabidopsis (DC.) Heynbh.
and grass Oryza L. (reviewed in Zobell et al., 2010).
Recently, MIKC* loci have been implicated in
microgametophyte maturation and development, but
much more work 1s required to understand whether

of loci involved 1n fertilization processes (reviewed in
Tian et al., 2009).

Since 2000, the development of high-throughput
sequencing has facilitated transcriptome and genome
analysis of a wide array of plant species, including

this 1s a common feature of the subfamily (Adamczyk  Arabidopsis, Oryza, and Vitis L. (Joint Genome

& Fernandez, 2009).

Although type I MADS-box genes outnumber type
Il in the Arabidopsis genome (Parenicova et al.,
2003), their evolution and functions are compara-
tively poorly understood. The type 1 genes can be
subdivided into the Ma, MB, and My subfamilies,
with MB being sister to My (Fig. 1; Parenicova et al.,
2003). They are much more diverse in their
structures than the type 1l and lack a canonical K
domain, although they do appear to form protein
dimers (de Folter et al., 2005; Bemer et al., 2008).
Two clear features have emerged regarding the type 1
MADS-box genes. First, they have experienced a
much more rapid birth-and-death evolution than type
II homologs (Nam et al., 2004). While phylogenetic
analyses of type 1l loci result in many deeply
conserved lineages, type 1 loci tend to cluster together
by taxon, reflecting independent and relatively recent
ocene duplications (Nam et al., 2004; Arora et al.,
2007). Second, they are commonly involved in the
development of the female gametophyte and endo-
sperm, as confirmed by both forward genetics and
broad expression studies (Bemer et al., 2010b and
references therein). These two features are possibly
interrelated and may retlect the often rapid evolution

Institute, 2010). This work has facilitated evolution-
ary studies of gene lineage evolution across the
angiosperms as well as comparative analysis of
functional evolution within this context (e.g., Arora
et al., 2007; Bowman et al., 2007). These studies
have highlighted the critical interplay between gene
duplication and functional divergence, even when
primary sequence 1s highly conserved (e.g., Causier
et al., 2005, 2010). To date, this work has primarily
focused on the grass and core eudicot model systems,
but new sequencing efforts now allow us to add a
third major lineage of angiosperms in the form of the
basal eudicot model Aquilegia L. (columbine) in
Ranunculaceae. Aquilegia consists of ca. 70 peren-
nial species distributed across temperate North
America, Europe, and Asia (reviewed in Hodges &
Arnold, 1994; Kramer, 2009). These recently
diversified species have long fascinated researchers
working in the fields of evolution and ecology due to
their association of poor genetic differentiation with
highly divergent pollinator syndromes (Hodges et al.,
2004; Hodges & Derieg, 2009). More recently,
Aquilegia has become a model for the evolution of
floral morphology thanks to its novel floral organ
types, which include first whorl petaloid sepals,
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spurred petals 1n the second whorl, and a unique fifth
organ lype of sterile staminodia positioned between
the fertile stamens and carpels (Kramer et al., 2007;
Kramer, 2009). For all these reasons, as well as its
relatively small genome size (~300 million basepairs

| Mbp| 2C), Aquilegia 1s currently the subject of

extensive genetic and genomic research that has
produced an extensive expressed sequence tag (EST)
dataset, a physical map, functional tools and, most
recently, an 8X genome sequence produced by the
Department of Energy (DOE) Joint Genome Institute
(Kramer, 2009; Joint Genome Institute, 2010;

Kramer & Hodges, 2010). This genome sequence

comprises ca. 302 Mbp arranged 1n 971 scaffolds, of

which ~2.9% 1s gap. In order to get a better
understanding of the evolution of MADS-box genes
and to create a resource for researchers interested in
working with Aquilegia, we used the publically
available first assembly of the hybrid A. coerulea E.
James ‘Origami’ genome to 1identity MADS-box
containing loci. The obtained sequences were used
in phylogenetic analyses of the entire MADS-box
family in order to assign subfamily affinities and were
further included i1n more detailed studies of the
MIKC® subfamily to confirm lineage homology. These
findings are discussed in the context of similar
studies with particular consideration for the implica-
tions of deep patterns of MADS-box gene evolution.

MATERIALS AND METHODS

[DENTIFICATION OF MADS-BOX GENES FROM THE HYBRID
AQUILEGIA COERULEA ‘ORIGAMI’ GENOME

In order to expand the set of 16 published
Aquilegra MADS-box genes (Kramer et al., 2003,
2004, 2007), we used Basic Local Alignment Search
Tool (BLAST) (Altschul et al., 1997) to perform a

search of the recently released hybrid A. coerulea
‘Origami’ genome, annotation v1.0 (Joint Genome
Institute, 2010) using previously identiied MADS
domain sequences from Arabidopsis thaliana (L.)
Heynh., Vitis wvinifera L., and Oryza sativa L.
(Parenicova et al., 2003; Arora et al., 2007; Diaz-
Riquelme et al., 2009). Specitically, we used the
Arabidopsis sequences for AGLI6, AGL29, AGL33,
AGL39, AGIA8, AGL50, AGL58, AGL61, AGLSO,
AGL82, AGL86, AGLS87, AGL97, AGLIS, AGLIOO,
AGLIOI, AGL103, and SEEDSTICK; Vitis sequences
for VoAGLI2, VvAGLI7.1, VoFLC2, and VoTM8; and
Oryza sequences for OsMADS62, OsMADS68, Os-
MADS89, OsMADS90, OsMADS94., and OsMADS96.

Each identified putative Aquilegia coerulea ‘Origami’
locus was examined for open reading frames using

SoftBerry FGENESH (Salamov & Solovyev, 2000).
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Predicted protein and complementary DNA (¢cDNA)
sequences were exiracted and BLASTed back to both
GenBank, in order to identity the MADS-box region
and make 1nitial assessments of affinity, and to the
Aquilegia genome sequence itself to identity any
other closely related paralogs. New MADS-box gene
sequences were deposited in GenBank under acces-

sion numbers JX680222-JX680256 (Table 1).

PHYLOGENETIC ANALYSES

Confirmed MADS-box containing loci were phylo-
oenetically analyzed in order to determine their
membership in the type 1 versus type 1l subfamilies.
This required using ClustalW (Larkin et al., 2007) to
construct an amino acid sequence alignment of the
~60 residue MADS domain. In addition to all of the
Aquilegia sequences, this alignment included all
Arabidopsis and Oryza MADS loci as well as Vitis
VoTM8 and Solanum lycopersicum L. TM8 to
represent the TM8 lineage (see Arora et al., 2007;
Diaz-Riquelme et al., 2009 for all accession
numbers). Neighbor-joining (NJ) analysis was used
on this dataset (Saitou & Nei, 1987) as implemented
by PAUP* (Swofford, 2002). The NJ phylogeny (Fig.
2) was rooted along the branch separating the type 11
sequences (MIKC® and MIKC*/Mo) from those of
type I, in keeping with previous studies (Alvarez-
Buylla et al., 2000; Nam et al., 2004). The MIKC*
loci were further analyzed in order to determine
specific affinities with deeply conserved lineages.
This analysis uvsed an amino acid alignment
encompassing the M, I, and K domains (collectively
termed MIK) of Aquilegia, Arabidopsis, Oryza,
Petunia Juss., and Vitis MIKC® representatives (for
accession numbers see Table 1; Immink et al., 2003:
Parenicova et al., 2003: Arora et al., 2007: Diaz-
Riquelme et al., 2009). The completed alignment
included 130 loci and 175 residues (contact author
for alignments). Maximum likelihood (ML) phyloge-
netic analyses were performed using RAxML (Sta-
matakis et al., 2005; Stamatakis, 2014) as i1mple-
mented by the CIPRES portal (Miller et al., 2009).
For the purposes of the RAxML analyses, the best
protein model of evolution was JTT (Jones) based on
MrBayes 3.1 (Ronquist & Huelsenbeck, 2003;
Huelsenbeck et al., 2008) amino acid mixed model
tests (greater than 99 posterior probability [PP]).
Branch support was estimated by performing 1000
replicates of fast bootstrapping (Stamatakis et al.,
2008) using the same parameters as the original
analysis. The TM8 lineage was used to root this
phylogeny, based both on the results of the analysis of
the MADS domain alone and those of previous

studies (Becker & Theissen, 2003). Matrixes and
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Table 1.

numbers are for the Dana Farber Cancer Institute A. formosa Fisch. ex DC. X A. pubescens Coville database.

l.ocus

AgAGL60
AgAGLOI
AgAGL62
AgAGLO63
AgAGL6O4
AgAGL6S
AgAGL66
AgAGLO7
AgAGLOS
AgAGL6Y
AgAGL70
AgAGL71
AgAGL72
AgAGL73
AgAGL74
AgAGL7S
AgAGLS0
AgAGLS1
AgAGLSZ2
AgAGLS3
AgAGLS4
AgAGL8S
AgAGL86
AgAP3-1
AgAP3-2
AgAP3-3
AgAP3-3b
AqPl
AgBS
AgSEPI
AgSEP2A
AqgSEP2B
AgSEP3
AgAGL6
AgAGLI7
AgAGLIZ
AgAGLIS
AgAGI
AgAG2
AgAGL24.1
AgAGL24.2
AgFLIA
AqgFLIB
AqgSOCI. 1
AgSOCI.2
AqgSOCI1.3
AqgSOCI.4

Scaffold

3
02
.
24
96

2
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Is
69
69
15
32
41
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3
>4

|

1529
112
2
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f|
18

0

0

Fi
30
14
o

0

2

2
11
13
10
14

A

136
22
1<y

{

2

2
13
3

3
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l.ocation

MADS Pos

9531086
2380365
2417969
3291956
478666
0042310
2220031
3429116
404345
400144
1987421
(297065
479166
190653
2460796
1514596
4405062
2108
22936
109423
51344389
969516
1770226
2204058
2147564
3032344
1797528
1712564
2313115
0303313
6945234
6911967
2306215
3 100234
436 (36
490009
1871509
(9379
(31674
1246754
4643609
6930012
6399 144
3057695
2391619
9953490
00200630

Strand

Plus
Minus
Plus
Minus
Plus
Plus
Minus
Plus
Minus
Minus

Plus
Plus
Plus
Minus
Plus
Plus

Minus
Minus
Plus
Minus
Plus
Plus
Minus
Plus
Plus
Plus
Plus

Minus
Minus
Minus
Minus
Minus
Plus

Minus
Minus
Plus

Minus
Minus
Plus

Minus
Plus

Minus
Minus
Plus

Minus

Plus

Vlinus
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T'ype

Alpha
Alpha
Alpha
Alpha
Alpha
Delta
Alpha
Alpha
Alpha
Alpha
Alpha
Alpha
Alpha
Alpha
Alpha
Alpha
Gamma
Gamma
Gamma
Gamma
Gamma
Gamma

Beta/gamma

EST

NoOrc
NOre
NOre
NOre

NOre

TC33318

NoOre
NOIe
NOre
NOre
NoOre
NOre
NOre
NOre
NOre
NOre
NOre
NOre
NoOre
NOre
NOre
NOre

NoOre

MIKC
MIKC
MIKC
MIKC
MIKC
MIKC
MIKC
MIKC
MIKC
MIKC
MIKC
MIKC
MIKC
MIKC
MIKC
MIKC
MIKC
MIKC
MIKC
MIKC
MIKC
MIKC
MIKC
MIKC

1TC22599
1TC24405
1TC20315
none’
1TC21654
none’™*
1TC30455
1TC23935
none
1TC20920
1TC27019
none

NOre

1TC30235
1TC22246
none™*
1TC24816
TSI T2%%
1TC23520
TL2702]1
DR913118
i s A

NONe

NOre

Hybrnd Aquilegia coerulea E. James ‘Origami® MADS-box genes with genome location. Expressed sequence tag (EST)

GenBank

1X680221
1X680222
1X680223
1X680224
1X680225
1X680226
1X680227
1X680228
JX680229
1X680230
1X680231
1X680232
1X680233
1X680234
JX680235
1X680236
JX680237
1X680238
1X680239
1X680240
1X680241
1X680242
1X680243
EF489478
EF489477
EF489476
HQ694798
EF489475
AY436713
1X680244
1X680245
1X680246
1X680247
1X680248
1X680249
1X680251
JX680250
AY464111
AY464110
HQ173338
HQ173339
JX680252
1X680253
HO173336
JX680254
1X680255
JX680256

* Locus 1s not represented in the EST database, but expression has been confirmed using reverse transcriptase (RT)-
polymerase chain reaction (PCR).
#% EST 18 incorrectly spliced.
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Figure Z.

Neighbor-joining (NJ) analysis of MADS domain sequences from all identified Aquilegia, Arabidopsis, and Oryza

loci. Specific lineages are indicated by colors and bracketing. The type 1 lineages are the My (yellow), MB (orange), and Mo
(blue), while the type 1l are the MIKC® (red, with individual lineages denoted by brackets) and MIKC* (or MJ; green). A

paraphyletic group of tour loci are colored in gray. In addition to the new AgAGLS6 sequence, these include three sequences

(AGLA7, AGL82, and OsMADS86) that have previously been placed with M but are instead associated with My in our analysis.

trees associated with this study were deposited in

TreeBase (<http://purl.org/phylo/treebase/phylows/
study/TB2:S13212>).

RESULTS AND DISCUSSION

THE MADS-BOX FAMILY OF THE HYBRID AQUILEGIA COERULEA
‘ORIGAMI’

We have identified 47 MADS domain containing

loci 1n the recently sequenced genome of the hybrid
Aquilegia coerulea ‘Origami’ (Table 1; Fig. 2). These
oenes are distributed across 29 different scatfolds

that range in size from almost 2 Mbps to 355 kilo
basepaird (Kbps). Scaftolds 2, 3, 4, 6, 7, 13, 14, 15,

18, 22, and 69 contain multiple MADS-box loci, but
only scaffolds 2, 18, and 69 appear to represent

tandem duplications (see below for further discus-
sion). Note that we detected two scatfolds that appear
to have assembly errors: 136, which has two i1dentical
tandem copies of AgAGI, and 96, which has two
identical tandem copies of AgAGL64. These dupli-
catles, which we believe to be artificial, were not
included in the analysis.

An NJ analysis of all of the recovered MADS
domains demonstrates that 23 loci distributed across
18 scaffolds fall into type 1, while 24 loci distributed
across 15 scaftolds are placed in type 1I. Overall, the
phylogenetic tree typology of MADS domain se-
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quences from all identified Arabidopsis, Aquilegia,
and Oryza loci (Fig. 2) 1s largely consistent with
previous studies (Parenicova et al., 2003; Arora et al.,
2007). The one inconsistency 1s the placement of
AGIA7, AGL82, and OsMADS96 relative to the M
and My subfamilies, which will be further discussed
below. The total number of MADS domain loci
identified, 47, 1s considerably less than the 107 and
75 known from Arabidopsis and Oryza, respectively
(Parenicova et al., 2003; Arora et al., 2007). This is
likely due to two factors. First, both Arabidopsis and
Oryza have experienced genome duplication events
in their relatively recent genomic history (De Bodt et
al., 2005), which may have increased the numbers of
MADS-box loci. Second, this study was conducted
using the v1.0 annotation of the hybrid Aquilegia
coerulea ‘Origami’ genome, meaning that further
annotation may yet identify additional loca.

TYPE 1 MADS-BOX GENES

The Aquilegia type 1 clade contains three
monophyletic lineages roughly corresponding to the
previously defined Mo, MB, and My (Fig. 2). The M«
clade includes 15 Aquilegia representatives, which
appear to deline at least three separate lineages that
are largely independently diversified relative to the
Arabidopsis and Oryza representatives. The My clade
contains six Aquilegia representatives that are, again,
likely to be independently radiated from the other
identified loci. The one point of disagreement
between our analysis and previous studies 1s the
placement of the Arabidopsis sequences AGIA7 and

AGL82 and the Oryza OsMADS96. Parenicova et al.
(2003) placed AGIA47 and AGL82 in the M clade,
albeit with no support. Likewise, the analysis of Arora
et al. (2007) 1identitied OsMADS96 as an M§
representative but with no reported support. In our
analysis, these three loci fall out with a new Aquilegia
sequence, AgAGL86, as paraphyletic to the My clade
rather than with the M. Closer inspection of the four
complete sequences reveals no obvious shared motifs,
either among AGIA7/82, OsMADS96, and AgAGLS86
or between these genes and either the MB or My
homologs (Parenicova et al., 2003; Arora et al., 2007;
and data not shown). Given that our analysis similarly
lacks support for these relationships, we cannot make
strong conclusions beyond saying that AgAGL86 1s
currently associated with the My clade.

This raises the larger question, however, of how
conserved the MP lineage really 1s across angio-
sperms. Previous studies held that MB representa-
tives were specific to the Brassicaceae (Leseberg et

al., 2006), but Arora et al. (2007) recovered an
apparent clade of Oryza MB loci. Likewise, in our NJ

Annals of the
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analysis, most of these same Oryza genes are
associated with the original MB genes from Arabi-
dopsis (Fig. 2). 1t 1s interesting to note, however, that
no clear MB representatives have been recovered
from the Aquilegia genome yet. Furthermore, exam-
ination of the putative M Arabidopsis and Oryza loci
does not reveal any obvious shared motifs, either
within the MADS domain or outside it (Parenicova et
al., 2003; Arora et al., 2007). Given this rather weak
association between the Arabidopsis and Oryza Mp
loci, along with their apparent absence from the

Aquilegia genome, 1t may be necessary to re-examine

the question of whether the MP lineage is truly
conserved across the angiosperms. Of course, the
annotation of the Aquilegia genome 1s 1n its early
stages, and M loci may yet be discovered.

In terms of patterns of genomic structure, most of
the type 1 genes are relatively dispersed across

different scaffolds. There are three pairs—AgAGL66/
67, AgAGL68/69, and AgAGL84/85—that represent

interesting cases. Each one of these pairs has
identical or almost 1dentical MADS domain sequenc-
es, while the rest of the coding regions contain a
small number of clear differences. Thus, we have
annotated them as separate loci, but it 1s likely that
they are derived from relatively recent duplication
events. One of the pairs, AGAGL68/69, 1s 1n fact close
together on the same scaftold (69), suggesting a
recent tandem duplication. However, the other two
pairs are not close together, with AgQAGL66/67 on the
same scaffold (18) but 1.2 Mbp apart and AgAGL84/
85 on completely different scaffolds (7 and 27).
Although 1t 1s possible that scaffolds 7 and 27 waill

ultimately be joined into one chromosomal unit, these
scaffolds are approximately 6.1 and 3 Mbp, respec-
tively, so the loci are at least 2 Mbp apart based on
their locations in the scaffolds. Neither of these pairs
shows evidence of shared synteny that would suggest
a large-scale duplication event. As 1s typical for type
I loci (De Bodt et al., 2003), the Aquilegia
representatives are predicted to contain few if any
introns, with only four loci predicted to have either
one (AgAGL60, AgAGL63, AgAGL69) or two
(AgAGL73) introns. It 1s interesting to note in this
regard that for the apparent tandem duplication pair

AgAGL68/69, the tormer lacks introns while the latter

has one, possibly reflecting a retroduplication origin

for AgAGL68.

TYPE 11 MADS-BOX GENES

Of the 24 type 11 MADS-box genes, only one
member 1s in the MIKC* subtamily, AgAGL65, a
homolog of the P-clade (Nam et al., 2004), with the
balance in the MIKC®. Many of the Aquilegia MIKCS
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members have been previously described, particu-
larly in regard to their potential roles in novel floral

organ 1dentity in Aquilegia (Kramer et al., 2003,
2004, 2007; Sharma et al., 2011), but this 1s the first

report for six of the loci (AgAGLIZ2, AgAGLI)S,
AgAGL1I7, AqSOCI.2, AgSOCI1.3, AqSOCI.4). Of
these new loci, AGAGLIS5> and AgSOCI.2 are also
represented by ESTs in the A. formosa Fisch. ex DC.
X A. pubescens Coville databases, but expression of
the remaining loci has not yet been demonstrated
(Table 1). There 1s one previously published locus,
AgFL2, which was originally 1solated from A. vulgaris
L., but we have been unable to identity 1t in the
hybrid A. coerulea ‘Origami’ genome. A partial coding
region for AgFL2 was defined based on four identical
cDNA fragments that were obtained in the process of
cloning the full-length AgFLI ¢DNA. Given that
AgFL2 appears to be a representative of an ancient
paralogous FUL-like lineage in the Ranunculales
(Litt & Irish, 2003), we are inclined to believe that it
was not a spurious identification, but the possibility
exists that 1t has either been lost from the hybrid A.
coerulea ‘Origami’ genome or has not been covered by
current sequencing. AgSOC1.3/AgSOC1.4 are also of
particular note since they lack introns and, thus,
appear to be retroduplications. The two open reading
frames are almost 1dentical but are located on
different scaffolds (3 and 5, respectively) with
different neighboring loci, including predicted trans-
poson sequence flanking A¢gSOCI.4, which further
supports the retroduplication hypothesis. Although
AqgSOC1.3/AgSOC1.4 are associated with FLC 1n the
MADS domain analysis (Fig. 2), this is not supported
by the MIK analysis (see below). Another interesting
point 1s that AgFLI and AgSEPZ2 are each represent-
ed twice in the genome, being part of a large
segmental duplication on scaffold 2. We term these
loci AgFLIA/B and AgSEP2A/B. Both homeologous
pairs contain introns of different lengths but have
only a very small number of differences in their
coding regions. It appears that ESTs from three of the
four loc1 are present in the A. formosa X A. pubescens
database (Table 1), with AgSEP2B remaining to be
confirmed as an expressed locus.

In order to better understand the phylogenetic
relationships among Aquilegia MIKC® loci, we
created an amino acid alignment covering the MIK
domains, which can be confidently aligned across the
entire subfamily. We expanded sampling in this
dataset to include Petunia and Vitis homologs and
analyzed 1t using ML as implemented by RAxML
software (Fig. 3). The topology of the resultant
phylogeny 1s largely consistent with previous studies

(Becker & Theissen, 2003; Gramzow & Theissen,
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2010). Although AgSOC1.3/AgSOC1.4 are associated
with the FLC lineage (Fig. 2), they fall into the SOCI
clade with strong support in the MIK analysis (Fig.
3A). This retlects the fact that while A¢gSOCI1.3/
AgSOCI1.4 have rather divergent MADS domains,

their 1-, K-, and C-terminal domains contain

synapomorphic motifs for the SOCI subfamily.
Unlike AgSOC1.3/AgS0OC1.4, the other subfamily

members, AgSOCI1.1/AgSOC1.2 have the typical six

introns associated with MIKC® loci. Therefore, no
Aquilegia representatives have been 1dentified for the
FLC or TM8 lineages, highlighting the mysterious
nature of both. FLC 1s notable because although it 1s
a highly pleiotropic locus in Arabidopsis, altecting
vernalization response, temperature-dependent ger-
mination, water use, and phase change (McKay et al.,

2003; Alexandre & Hennig, 2008; Chiang et al.,
2009; Willmann & Poethig, 2011), orthologs have yet
to be i1dentified outside the core eudicots (Becker &
Theissen, 2003; Gramzow & Theissen, 2010).
Despite some possible evidence for a conserved role
in flowering time response (Reeves et al., 2007), no
direct functional data exist for FLC orthologs in other
core eudicots, and the source of their derivation
remains unclear. One possibility 1s that the Lineage
was derived from the y hexaploidization event at the
base of the core eudicots (Jiao et al., 2012; Vekemans
et al., 2012), but even if that is the case, it remains to
be determined what the most closely related lineages
might be and which aspects of the complex functional
repertoire 1n Arabidopsis might be conserved across
core eudicots. The TM8 lineage 1s even more
enigmatic. Very few homologs have been identified,
the majority of which are found in the core eudicots
(although Arabidopsis lacks a TM8 ortholog; Becker &
Theissen, 2003), and no function has yet been
ascribed to any member. The ongoing, extensive
transcriptomic and genomic studies of diverse
angiosperms will hopetully help answer some of
these questions.

(CONCLUSION

Aquilegia 1s an important new model system for the
study of both ancient and recent evolutionary
processes. Our identification of a large number of
MADS-box containing loci will aid comparative
studies seeking to bridge the gap between grass and
core eudicot models. In particular, the characteriza-
tion of a large number of type I MADS-box genes will
allow researchers to determine whether the novel
expression patterns and functions associated with
these loci are deeply conserved across the angio-
sperms. Overall, our finding that the Aquilegia type 1
and type 1l subfamilies have very different evolu-
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Figure 3. Maximum Likelihood (ML) analysis of the MIK domain sequences from Aquilegia, Arabidopsis, Oryza, Petunia,
and Vitis, and MIKC® loci. Bootstrap support values of more than 50% are indicated at nodes. Brackets on the right denote
specitic lineage aftiliations. Asterisks indicate Aquilegia loci.
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